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The steady two-dimensional flow of a compressible, conducting fluid past a wavy wall or a
thin symmetrical airfoil is studied for the case where the undisturbed. uniform magnetic field
is oriented either perpendicular or parallel to the undisturbed uniform stream. Exact solutions
of the linearized magnetogasdynamic equations are obtained for arbitrary values of Mach
number M, Alfven number A, and magnetic Reynolds number for Rm for wavy walls of various
forms. The solutions for a thin symmetrical airfoil are obtained in terms of their Fourier
transforms. the inversions of thich are carried out only for the case of a perfectly conducting
fluid. Included in the solutions are the effects on the flow fields of a system of magnetic
dipoles and currents placed in the bodies(airfoils and wavy walls). For sub-fast-wave flow with
infinite Rm and crossed undisturbed fields, the present theory gives a negative drag for certain
current systems in the body. The slow and fast waves of magnetogasdynamics at infinite Rm
are generalized to damped waves for arbitrary Rm. They become Mach waves in the limits Rm
— 0 or A — . When the undisturbed fields Vo and Bo are aligned. the upstream facing
wave and a magnetic wake (or magnetic boundary layer) facing either downstream ur upstream
are recognized in the compressible flows past wavy walls for large Rm. A reversed flow theorem
for the upstream wake and the current-free classical ideal flows are developed for arbitrary
Rm.

Lastly. the flow past wavy wall with finite thickness is obtained where the fluids above and
below the wall may be different, i. e. the the free streams directions Mach Number, and
magnetic Reynolds numbers. etc. for the flows above and below the wall may be different.

ly conducting fluids). Two of the most

INTRODUCTION interesting phenomena of magnetogasdy-

namics in the case of aligned undisturbed

Magnetogasdynamic flows are governed fields are (i) the upstreamfacing wave
by higher order differential equations than ~ which occurs when M2+A42>1, M<1, A<
ordinary gasdynamic flows giving rise to 1, Rn=co and (ii) the magnetic boundary
two wave systems where the magnetic layer (or magnetic wake) when R,=co
Rewnolds number R,=co instead of the which faces upstream for M2+ A42<1 and

single Mach wave system which charac- downstream for M2?+A*>1 (Resler and
terizes the flow in ordinary gasdynamics, McCune 1960). Here A is the Alfven number
where K, =0. An extensive literature (see and M is the Mach number. However,

Sears 1961) has accumulated on this subject since previous investigations for arbitrary
when R,=0 (ordinary gasdynamics) and R, have been limited to incompressible
R,,=oc (magnetogasdynamics with perfect- flows (M=0), it has not been shown that
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these controversial large R, solutions
characterize flows which occur under more
general conditions and which reduce to
ordinary subsonic and supersonic flows in
the limit R,—0.

In this paper, exact solutions of MHD
flows past thin bodies with crossed and
aligned undisturbed fields are studied for
the entire ranges of A, M, and R,. The
following simplifying assumptions are
made:

(a) The geometry of the boundaries (thin
symmetrical airfoils and wavy walls)
and the magnetic singularities (cur-
rents and magnetic dipoles) are such
that the perturbations of the flow
fields are small compared to free-
stream values and vanish at infinity;

(b) The flow is steady and two-dimen-
sional and the unperturbed magnetic
and velocity fields lie in the plane of
the flow perpendicular or aligned to
each other with no current in the
unperturbed stream;

(¢) The fluid has constant properties,
zero viscosity, and a scalar electrical
conductivity;

(d) The flow process is either isothermal
or approximately isentropic and the
fluid is a perfect gas;

(e) The bodies (whose magnetic perme-
ability p, may be different from that
of the fluid, ) are perfect insulators
having imbedded currents or magnetic
dipoles;

(f) There are no discontinuities in the
flow fields (velocity, magnetic field, and
pressure) except across the body
surface.

As R,, changes from 0 to oo, the solutions

continuously change from the ordinary
gasdynamic solutions to the infinite K,
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MHD solutions, displaying damped waves
for finite R,,. The drag curves of Resler
and McCune (1959) and the flow fields of
Broer and van Wijngaarden(1963) can be
reproduced as the case M=0 of the present
theory. The solutions for infinite R, are
also presented and used to demonstrate a
negative drag. A reversed flow theorem
for the upstream wake of incompressible
sub-Alfvenic (A4 <1) flow past a magnetized
body is obtained in a manner similar to
that of Hasimoto (1959) who considered
viscous flow with R,=oc0. The current-free
classicl ideal flow in MHD observed first
by Sears and Resler (1959) for R,=c with
aligned fields, and by Lary (1962) for finite
R, with aligned fields is reproduced here
for both aligned and crossed fields. The
present theory reduces to the ordinary
gasdynamic of subsonic and supersonic
flows in the limit of zero applied magnetic
field (A—o0) as well as in the limit of
zero conductivity of the fluid (R,—0).

BASIC EQUATIONS

The fundamental equations governing
MHD flows under the assumptions stated
above are:

VXB=yJ, (1)
V » B=0, 2)
vV x E=0, . 3
J=¢(E+VxB), 4
V- (oV) =0, ®)
p(VeV)V==VP+JXB, 6)
P—Py=a4 (p—9% (7)

where B=magnetic induction, p=magnetic
permeability, J=current density, E=elec-
tric field, s=electrical conductivity, V=
flow velocity, p=density, P=pressure, and
a, is the isothermal or isentropic sound
speed at free stream conditions (depending



on the assumption (d)].
For sufficiently small disturbances the
state variables can be written in the form
V=(1+U,, U,, 0),
B=B(cos §+eb,, sinb+eb,, 0),

= PP =P—Po__ €8 8
o= Po ) P pU? — M2 ®

JE—[gJ_ (OD 0: (j);

where U, B, p,, P, are the magnitudes of
the undisturbed state variables, M=U/a,
is the Mach number, L is the wavélength
or chord of the body, and 6 is the angle
between the free stream direction and
the applied magnetic field. We use the
dimensionless right-handed Cartesian co-
ordinates «, ¥, and 2. From Egs. (1), (4),
(8) and the assumption (b), only the z-
components of E and J are not identically
zero. Due to Eq. (3) and assumption (b),
E=-UBZsin6. We
denote by ¢ the thickness ratio of the

E is a constant:

obstacle or the amplitude to wavelength
ratio of the wavy wall. We confine our
attention to situations where <1 and
each nondimensional state variable and
its derivatives are of order «. We define
the magnetic vector potential X (x, y¥) and
the stream function ¥ (z, y) such that
aX X

2z ——=-b, a3y ———=b,; and
o _ o _
N Uy, '—ay =uy+s. 9

The nondimensional current j(z, ¥) and
vorticity w(x, y) can be written as

b, b,
==z oy — VX

= Uy  0u, _ 2 . 0P ,
wE—g 5y = -+ M 3y 9

8 and (9)
neglecting terms of

The introduction of Egs.
into Egs. (1)—(7),
higher order in ¢ gives

i
cos 0—+sm 9—— ay 3
aZ
T oxay
az
- ox?
—Mz3sin ¢ X(x,y) (10)
M=)~ | |7 (@, 9) an
d .
TR /UO(x, 2 (12)

where the magnetic Reynolds number R,
=Ly, and the Alfen number A=+/Upe/
B. Eliminating any two of the three quan-
tities, &, X, and p from Egs. (10)—(12),
we obtain the 5th order partial differenial
equation

(o (v -4 ) (-2 ]
+V2{cos 0Tax‘+sm O—— o )z
82
-2 )@, m p)=0. (13

When 0=~’2r- (crossed fields), this reduces to

(% 5= VZ(VZ—Mz 327

+(c2 - P )(Cz aac22 - az;z )]
&, z, p)=0 (14)

where
= (A M-1-C) =,
C}:—-%(A2+M2—1+C'2) >0,
C=v 0+ M+ {1+ M-4A7F >1,

= Fm
K="

When §=0(aligned fields), Eq. (13) be-
comes
1 a
(& 2 v (V-2
? ((1-M> (1-—-A3
+ A== AT [ T

aaxz - ay }]@’ z, p,) =0. (16)

s
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When =0 (incompressible flow), Eaq.
(16) reduces to
2 |-k -y v @, 5 p) =0
an

The relations between w and j, obtained
from Egs. (9), (11), and (12), are

N (a’ sin §-+-2L 7 L cos 6)(18)

w=j—%2— cos f— (V2 —M? g:z

Since the system is dissipative, the per-

)w. 19)

turbations must vanish at infinity. The
application of the boundary conditions on
the surface of the body, at y==0, is
justified by the usual arguments of thin
airfoil theory, i. e., the space-gradients of
the flow variables are of order ¢ and the
surface of the body lies within a distance
of order ¢ from y¥=0, while the magnetic
field in the body is harmonic. Hence, the
body may be replaced by distributions of
singularities (sources, sinks, currents, and
magnetic dipoles) along ¥=0, The total
flux from the magnetic dipole distribution
is necessarily zero. In this paper, we shall
confine our attention to flows for which
the net current in the body ([ dxdy over
the body cross section) is zero. Thus, the
boundary conditions for a thin symmetrical
airfoil can be written in the form

T (x,£0)==xf (),

X(x,+0)—X(x,—0)=—m(x),

o X(x+0) Xz, —0)

ay Y
——h(@), (20)
fl@)=f®) =0,
m(a)=m(®d)=

fb"h (2) dz=0,

where m(x) and h(x) represent the dis-
tributions of magnetic poles and currents
in the airfoil, and @ and b are the z-co-
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ordinates of the leading and trailing
edges of the airfoil.

Since the magnetic permeability pw of
the airfoil does not appear in Egs. (10)—
(12) and (20), the solution for the flow
past a thin airfoil is independent of pw.

GENERAL SOLUTIONS

We shall study first the flow past a thin
symmetrical airfoil, and will then apply
the results to the wavy wall problem. A
flow field will be called symmetrical if
each flow quantity is either an even or
an odd function of y. A study of Egs.
(10)—(12) and Eq. (20) shows that sym-
metrical solutions for the flow past a thin
symmetrical body do not exist unless 6=

0, or 0=%. For these two cases, sym-

metrical solutions can be obtained in the
form:
(i) for crossed fields

Tz, -y)=-¥(z, ¥,
p(x: _y) =p(xl y) »

X(x, —y) =X, ¥, @la)
m(x)=

(ii) for aligned fields

Tz, —y=—0( vy,
r@, —y) =p(z, ¥,

X(xl “’!/)=—X(-'l7: y)) (21)b
h(z)=

We define the Fourier transforms

F(z, ) =f F(z, y)edy
+[F@, pendy, ()

T, n=]_F, peerda.
We then treat Eqgs.(10)—(12),(20) and
(21) in the conventional manner and ob-

tam the followmg descriptions of 7 &,
X, », and D »:



(i) for crossed fields,

rAf (ievu (1—Mig?
== | R, Iy {:24,7]2)
M~ g 4

|~ 2

\7 e 1Gaxk)
where

7 M

—in g€+ +ig] e +2f |

>

el go@rm +ie) |-z

A=t (K+16) +n2 (16 (2— M) + K (1— A2~ M?) %} + (1— M2 165+ K&t (AP M2 — A*— M) ;

(ii) for aligned fields,

y /i (I—-MAE,  —¢&y, i (1—M?) . e
’Jt E _M @+ {§+,72 +ie}, E+v’ B
7 |=Rn TR (1—M2) {Tm‘? +ig |2 f (24)
? J - A”z @+, L@+ —in| ST i =
e S En A
R, ’
where R
Ar=p*+7{{2—- M) EFIK (M + A2~ 1) &} + (1 - M) & +iK(M*—1) 11— A &~
The inversion with respect to y of the f" _fby+mb, N (26)a
foregoing transforms can be carried out - S
by contour integration. The results are: Xz, )=—— 4};5 ly& g,’;( -1
(i) for crossed ﬁelds, . A mEy .
f £ o 2l Gi€Xen 1Yo (26)b
vz, y)= 4r lyl L( - o ?
o = where
f - ﬁﬂi&e«eanda @25)a by=— (KA%E+E2+1),
- 2 K )
X@ 9 =" £(-1 bi=—3-A-MIE,
o = —KA%¢,
j fellzhezLed(€x+ﬂeri)dE’ @5)b & w

where
Cu=—g, (E%+0%) + KA,

e=—Kg, gi=K+i¢,
= — KA2£

ea=[{(1—M»it —KM?*} &+ gnf

2v
o= (@~ M) i+ K (1— AP~ M)},

gs={(1—M)is+ K(A*M>~ A*—~M?) } &,

m=/ {0+ (-4} /g, »
Zz'—“-«/g’z—:éﬁ ,
(ii) for aligned fields,

7 (@) =4 oD

A= ._..%_{(Mzml) ({KE—E9) +H},

w= g @M+

=M -4+ (-D'S,
S,= \/711” (Mgt — K= (M2 + AP —1) %%
K

(14 A%— M?) 285,
Since the contour integration with res-
pect to » picks up, for ¥ >0, only the

residues of poles in the upper half plane,

and for y<0, only the residues of poles
in the lower half plane, the square roots

defining # must satisfy the condition
I/

inversion path.

27
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>0, for all £ on the final



The implications of Eq. (25) and Eq.
(26) are independent of the particular
choice of the branches of the square roots
Z, and S,. For convenience we shall al-

ways choose the branch of any square root
according to the condition (27).

When M=1 and the applied fields are
aligned, Eq. (11) shows that the solution
is of the form ¥ (z, ¥) =V, (x) +¥,(y). Hen-
ce, no solution exists for which the dis-
turbance vanishes at infinity. Note that
the integrands of Eqgs. (25) and (26) are
not singular at the zeros of Z, or S,. Note
also that when R,,—0 and/or A-»co, we
recover the familiar results of conven-
tional gasdynamics.

THE FLOW PAST A WAVY PLATE
OR WALL

For many configurations the integrals
in the general solutions (25) and (26) can
be evaluated immediately. We shall study
three such configurations. (1) The flow
past a wavy plate with symmetrical thick-
ness distribution. (2) The flow past a
wavy plate with constant thickness. (3)
The flow past a wavy wall occupying a
half-space (See Figs. 5 and 6). The maxi-
mum non-dimensional thickness of the
plate or the amplitude of the wavy wall
surface is of order e.

In the following, whenever [ and/or n
appear only on the right-hand side of an
equation, it is implied that the expression
be summed over [=1, 2 and/or over —oo
<n<eo. No such summation is implied
when an index appears on both sides of
the equation.

Case(1). The boundary conditions to be
used in Eq. (25) and Eq. (26) may be
written as

f (.’L') =fnei€..a:, ? (E) =2”f‘n6 (E"'Eﬂ) »

h(z) =h,e",
m(x) =m,e,

B(8) =2rh, (€ —&,),
m (&) 2n,Mpd (E—E&4),
where é,=2nz, and 8(z) is Dirac éfunc-
tion.

For crossed fields, the solution (25) is

/i (x, y) —_ y w"”ei(e.zﬁ,'_lyl),

7
X(x; y) =Xt”e“5-2+ﬂh|1”’
P(Z, Y) =Piae 7", (29)
7 (@, Y) =18 0",

where
Pin=1E T in/Tim, Fin= (E%+nin®) Atn,
T=(—1)! (FaCuntRnC2n) / (2Z,,),
Xin= (=D (fulrin+hatorn) | (2Z2,),
and where cun=cy (=), Zam=2Z,(6=¢0),
etc. The pressure drag D, and the magnetic
drag D, per unit wave length of the plate,
measured in units of plU%Leé?, are

Dyp=24¢ _of -aDin, (30)
D=z inAinhi_n. 31
For aligned fields, the solution is

w‘(x, y) — y w'lnel(&zh,‘_wl)’

[yl
X(x’ y) — TglAX,"ei(E-zw"wn’
D@, Y) =Dl =, (32)

N =__y_ y ‘<€;z+7h|yn
](x,y) |,y| ]lne' ’

where

Pr=in, 7,/ (M*-1),

Tin=(E%+7"m) A,

1= (—1)* (fabun+maban) / (25.4),

Xin= (1) (falin+Mnlu1n) / (28.0),
and where by, =by (6=6,), S;a=8.(§=&,),
etc. The pressure drag is given by Egs.
(30) and (32), while the magnetic drag is

D,,= _%e—nm—nAann- (33

Case(2). The solutions obtained above
can be used to find the flow past a wavy
plate with constant thickness(of order ¢),

by simply multiplying by IZI and rede-



fining the magnetic singularities & (x) and
m(z) in the body to satisfy the magnetic
boundry conditions (20). The symmetrical
solutions are now obtained in the form

(i) for crossed fields
?F(x, ""y):w'(x: y)r
p(z, —Y) =—pY),
Alx, —y)=—A(x, ),
h(z) =0;
(ii) for aligned fields
Tz, —y)=7(x, v),
p, —y)=—p, Y,
A, —y) =A@, 9), @b
m (x) =0.

34)a

The solution for Case (2) is obtained
by determining the functions k(z) or m (x)
in the solution of Case (1) in terms of
m(x) or h(x) of Case (2) by Eq. (34) and
the magnetic boundary conditions (20):

(i) for crossed fields,

h, of Case (1) is to be replaced by

MuZontIn(Cr2n—C11a) .
€210 €22n ’

(35a

(ii) for aligned fields,
m, of Case (1) is to be replaced by

ihnSZn +fn (771n - 7}21:) 25T :
N2nlazn — Nalz1n

(35)b

The flow fields are given by Egs. (29),
(32) and (35) for y>0, and by Eq. (34)
for y<0. The pressure drags are given
by Eq. (30), while the magnetic drags are
given by Eq. (33) for crossed fields and
by Eq. (31) for aligned fields, the substi-
tutions (35) always being implied.

It should be noted that the flow fields
for Cases (1) and (2) are independent of
the magnetic permeability g, of the plate.

Case (3). The flow past an infinite wavy
wall with magnetic permeability g, that
occupies the half-space y <0 can be treated
in a similar way. The magnetic field in
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the wall (y¥<0) is current-free and may
be written in the form
Xo(z, y) =w,eo='%v  y<0. (36)
Let an artificial current sheet be provided
in the wall at y=—0 such that
Py (Z) = Roppe. 37
The magnetic boundary conditions at
the inter-face y=0 can be written as
Xz, 0)=X,(z, 0),
aX(z, 0
gy ) =L ana(Z' 9 _h,@).
(38)
Eq. (38) implies that X and X, are
nondimensionalized by the same quantity
Be and that h and he are also nondimen-

sionalized by the same quantity_.—B-s.

The flow fields, for y>>0, of Case (1)
satisfy the differential equations and hydro-
dynamic boundary conditions of Case (3),
for arbitrary function h(x) or m(z) of
Case (1). This function and the magnetic
field in the wall are determined by Eg.
(38). The results are:

(i) for crossed fields,

Wn=[(€20n—€n1n) {hn of Case(l)}
+ (erzn—un) fal/ CZom), (39
h, of Case (1) is to be replaced by

ZZZnhw'n_ |enl (elZn—elln) fn—L
s (40)
Zon+ 1Enl (€220 —€210) E‘

(ii) for aligned fields,

w,,=——;—{m, of Case (1)}, (41

m, of Case (1) is to be replaced by
ialn (7/111_721:) fn—ZSZnhwn
1 (@aonT22n — B21a21n) + | &0 SMTFw—

.(42)

We shall normalize the drag per wave
length of the wavy wall by %poUstz,
so that Eq. (30) is still valid as the pres-
sure drag with the substitutions (40) or
(42). The magnetic drag on the wall due



to the imbedded current distribution A, ()
is computed as:

Dm= _A%‘ienwnhw-n (43

for both crossed and aligned and aligned
fields.

An immediate consequence of Egs. (35),
(40) and (42) is that, when there are no
magnetic singularities in the bodies, the
solutions for y >0 for the various configu-
rations are related by:

(i) crossed fields
Case (1) (for arbitrary p,,)

=Case (3) (for p,=0o0),
Case (2) (for arbitrary p,) (44)a
=Case (3) (for u,=0);
(ii) aligned fields
Case (1) (for arbitrary pu,)
=Case (3) (for u,=0),
Case (2) (for arbitary p,) (44)b
=Case. (3) (for p,=o0),

The incompressible flow theory of Broer
and van Wijngaarden (1963) for Case (1),
(2) and (3) is obtained as the case M=0
of the present theory. The drag curves of
Resler and McCune (1959) for Case (3)
can be reproduced by putting M=0, y=yg,,
and h,(z)=0 in Eq. (30). The present
theory reduces to that of Sears and Resler
(1959) when M=0 and R, =o0, and to that
of Ackeret when R,=0 or A=co,

MHD waves and magnetic boundary
layers. Summations over [ and n always
give real numbers in all expressions above.
To each term with subscripts [ and =,
there is a complex conjugate with sub-
scripts {+1 (or [—1) and —n in the sum-
the following are

mation. Therefore

equivalent summations:

> p) =2R,“z"_w (=1 or 2)

lm] -

2 4

=2R.}. 3. (45)

I=1 nx]

For each Fourier compoent of the bounda-
ry conditions, i. e, for fixed |n|, there
are two terms in the solution. These two
terms are generalizations of the fast and
slow waves of the infinite R,MHD theory,
and represent two damped waves in the
solutions (29) and (32). The damping
distances §;, from the wavy surface of
the body éVer which the flow perturbations

decrease to % of that at the body surface

are
1=l (m1a) 1". (46)

The tangents of the wave angles (Mach

angle when R,,—0) are

()= —ealReu 1. D)

o1 1s always positive due to the condition
(27). The damped wave is facing down-
stream (upstream) if (%) >0 (L0).
Figures 1 and 2 are wave diagrams obtain-
ed from Eqs. (46) and (47) for sinusoidal
boundary conditions (See (53)).

Each of the wave diagrams (Figs. 1 and
2) consists of two curves corresponding
to the two terms meationed above. For
given A, M, and R,, vertical coordinates
of these curves are fixed by the damping

o

distances 4§, while the wave angles are

s~ @

(S

r o
‘u
o}y W00 Rey
e *
fAN 91...-
ufi
Dommstream
L

© Trome-fust- wave flow: Med2, A- i

(d) Super-fast-wave flow: MevE, Asd

Fig. 1, Wave diagvams for the case, where
U is perpendicular to B
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1.
Downsiream |

~Alfvenic flow (h} Supersonic super-Attvenic Flow s
L St ey fr Y

Fig. 2. (a)-(h) wave diagrams for the case,
where U is aligned with B.

used as the polar coordinates of the wave
diagram. Numbers in the wave diagrams
are the magnetic Reynolds numbes R,,
some of which differing by a factor /10
from the adjacent are not shown. In Fig.
1(c), for example, the wave diagram shows
that, for crossed fields with A=M=,/72
and R,,=10, the two damped waves, denot-
ed by Q and Q’, have damping distances
86=0. 386, ¢’=0.291, and wave angles <QLx
=39.7°, <Q'Lx=66.7°, respectively. One
of the two waves in general becomes a
Mach wave in the limit E,,—0; the ampli-
tudes ¥, Xiu, etc. of the other wave
vanish as R,,—0. It is seen in the wave
diagrams that the slow and fast waves of
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the infinite R,, theory appear as R,,—»co.

For crossed fields, Fig. 1 shows that the
waves always face downstream. For align-
ed fields, however, Fig. 2 shows that, for
subsonic flow (M <1), one of the two waves
faces upstream and the other faces down-
stream; for supersonic flow (M>1), both
waves face downstream. Another major
distinction between Fig. 1 and Fig. 2 is
the appearance for aligned fields (Fig. 2)
of a “tail” that passes the point L and
implies that, for one of the two waves, the
damping distance 6 approaches zero and
the wave angle approaches 180° for sub-
critical flow (M?*+A2<1) and approaches
0° for M2+A2>1 in the limit R,—oo,
This is the MHD boundary layer (or MHD-
wake) generalized to compressible flow.
The wake is facing upstream for subcriti-
cal flow and downstream otherwise. In
fact, one can expand Eqs. (46) and (47)
at large R,, to obtain expressions for the
MHD boundary layer

=(mia=r)

for aligned 7 El r (48)
fields and
d ,_: 2A /2
Ruree, | (35)= (momir 2= =1
2 2__

and the infinite R,, theory. For incompress-
ible flow, Eqgs. (46) and (47) for aligned
fields simplify to the irrotational flow

= Iflnl’ (%‘)”"

and an MHD boundary layer

8 (50

1/2

- 2
5’[ T RZ (A=) 21E,2 1

dy 2 /2
(EE) =[ BT REI(AT—1)T 2—¢,2 ]
=1 (51)

that faces upstream for sub-Alfvenic flow
(A<1) and downstream for super-Alfvenic



flow (A>>1). When M=0, Eq. (48) reduces
to the formula of Sears and Resler (1959)
for the thickness of MHD boundary layer
in incompressible flow. The idea of an
upstream facing wake has so far been
discussed only for incompressible flow
(Hasimoto 1959, Greenspan and Carrier
1959, and Lary 1962). Existence of such a
wake in compressible flow has been pre-
dicted by Resler and McCune (1959), and
is confirmed in Egs. (48), (49), and in the
wave diagram Fig. 2(a).

As R,,—»co, the perturbations in the thin
MHD boundary layer become so large that
one must either require ¢ to be very small
or use a nonlinear theory. This limitation
of the present theory for aligned is most
severe for the configuration of Case (1).
Figure 2 shows, however, that the MHD
boundary layer phenomenon is quite diffuse
when R,, is around 10.

Figure 2(c) shows another drastic de-
parture from ordinary gasdynamics by hav-
ing an upstream facing wave for large
R, for supercritical flow (M2+A4%>1, M <
1, A<1). This phenomenon has been dis-
cussed in the infinite R, theory of Resler
and McCune (1959), Kogan (1959), and
Sears (1961). Exact solutions of compress-
ible conducting flow past a thin sym-
metrical airfoil for R,=co will be pre-
sented later in the present paper.

MHD drag. Expressions for the drag on
the body are presented in Egs. (30), (31),
(33), and (43). When there are no magnetic
singularities in the body, the drag is given
by the pressure drag (30). In Figs. 3 and
4, the drag coefficient C,

=D
Co=—g 37 (52)
for the sinusoidal wavy plate
f(x) =€ cos 2zx (53)

of Case (2) without magnetic singularities

in the plate is plotted versus R, for vari-
ous of M and A. For crossed fields, Fig.
3 shows that the ‘drag is greater than that
of conventional flow for subsonic flow and
is less than that of conventional flow for
supersonic flow. For supersonic flow, Cp,
decreases with increased magnetic field
for crossed fields but increases for aligned
fields (Figs. 3 and 4). This dependence of
C, on the magnetic field can be seen more
clearly in Figs. 5 and 6, where C;, is plotted
versus A for various of M for all configu-
rations. It is seen that, except for
supersonic flow with crossed fields, the
drag increases indefinitely with increasing
magnetic field.

INFINITE R,, RESULTS FOR
THIN SYMMETRICAL AIRFOIL

Compressible MHD flows past a flat
airfoil for R,=co have been studied by
Resler and McCune (1959) and Sears (1961).
For R,=oo, the integrals in the general
solutions (25) and (26) for a thin sym-
metrical airfoil can be evaluated. We shall
write down the results of integrations in
the following.

Crossed fields. Let us first’ define k(z)
by

Sudeonic svbe fokt-woes Ay

| T te-eam e
o supar- fesi-omve o
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Susonic super-Alvenic e
~

Fig. 3. Drag coefficient Co of wavy plate with
zero thickness plotted vs. Ry, for various
values of Mach number M and Alfven
number A for the case, where U is
perpendicular to B.
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Fig. 4, Drag coefficient Cp of wavy plate with zero thickness vs. R,, for various
values of M and A for the case. where U is aligned with B.
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Fig. 5. Drag coefficient Cp of wavy wall with
s=p, ( ®e ), wavy plate with zero
thickness ( " ) and symmetrical
wavy plate ( 94 ) plotted vs. Alfven
number A fo various values of Mach

number M for the case, where R,=IC
and U is perpendicular to B.

D) _h(@), k@ =0, 4
so that the last condition of (20) is
automatically satisfied. We shall use the
subscript sub when the velocity of the
free stream is less than that of the fast
wave (M24+A"%>1), and super when the
velocity of the free stream is greater than
that of the fast wave (M 2+ A72<1). The
results of integrations are

T s (, y) =ﬁ{R2(x_Czl yl)

Fig. 6. Drag coefficient Cp, of wavy wall with
u=g, ( w@ ) wavy plate with zero
thickness ( #w# ) and symmetrical
wavy plate ( %) plotted vs. Alfven
number A for various values of Mach
number M for the case, where R,=10
and U is aligned with B.

— [ e

w-super (, ’.ll) =—|%T {Rz (x_'cz | yl)
—R,(z—CilyD)}, (85)
Poy=— - Ra@—Cilyl)

+ 1 PR @) (x—t)dt
Co J o (@—1)2+C%y? }'

Pmnr=_‘{ Clr2 Ry (x—C,ly))

—¢-R\@—Cilyh}, 66



cub-‘_(Cz“"C"‘)Rz (x—Cylyl)
) B8,

Xeuper=— (Cz——lg;‘) Ry (z—C,lyl)

+(Cot

_(%f“cx)Rn(w—Cllyl), 7)

jaub=A2{('17—j]£‘+Cz)R”2(x—Czl'!/|)
(M -1 Co) 'R’ (@) (a:—-t)dt}
{

T

G o @—0)+Cy2)
_ M2
jtuper=Az ("1TM—+C2)R”2(x"Cz|y|)

+ MC. +C)R", @—CilyD)] 68)

where

R @) ="Gf (a;)C;k(x) ,

Ry(ey=S G k@ g ) —f@),
Cy=Ar—M2—1-C2 <0,
C=Cit20%0, Co= [-C1 (59

The first terms (C, terms) of Egs. (55)-
(58) are recognized as the slow wave and
the second terms (C, or C, terms) the
fast wave. An immediate observation in
Eq. (58) is that the elliptic part of the
current vanishes for incompressible flow
(M=0).

The pressure drag on the airfoil normal-
ized by e, U, Lé?
Eq. (56) as

are computed from

D=~ o[ G @) -k @
Fande—d ['[LDE@ 4 g

Dy =00 (G @)

. 1
—k@)f @)} dr——
[ @)y—k@r@)dc). o0

The magnetic drag on the airfoil is
computed from Eq. (57) as

Di sup=— ZC%AZ {(Cz %I: )
[lCf @k @ - @ @)} de

C‘ (Co+ %41)

B —@dedt:l (61)
s (G )
(G @k @ - & @) ds

+[c) e @k @

— (K )3 dx].

Dm super™—

Equations (60) and (61) provide a vari-
ational problem for minimizing the total
drag D=D,+ D, by choosing the optimal
k(x) for a given f(x). Here, we simply
demonstrate that the present theory can
have negative drag(D<0) for sub-fast-
wave flow. Suppose the current in the
body is related to the geometry by h(x)
=af (x), i.e, k@) =af(2),
real number. Then the elliptic terms (fast
wave terms) of Eq. (60) and Eq (61) vanish.

Now, D, =0 and D, ;,u=0 when a=q,=
Cs; and D, s+ D suiv=Doy=0 when a=a,=

242
—_ W. ThUS,

function of « which vanishes at a=a;, and
@, Wwhile De, <0 for « between «a, and a,.
Notice that, always, «; <0 and a,<0. Also,
it is easy to see that e;>—2, a,——2when

where a is a

D.., is a quadratic

M-0, and the flow fields become irrotatio-
nal and current-free. Therefore zero drag is
minimum drag for the group h(x) =af'(z)
in incompressible flow with crossed fields.
When M=0 and k (z) =0, Eq. (60) reduces
to the Alfven wave drag of Sears and
Resler (1959). For A=oc0, Eq. (60) reduces
to the Mach wave drag of Ackeret.
Aligned fields. Let us define the sub-
scripts 1 through 4 to denote the various
regions of the Taniuti-Resler diagram by
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(1) subcritical flow
M4+ A2
(2) supercritical flow
2+ A>1; M1, A<,
(3) subsonic, super-Alfvenic
M, A>1;
or supersonic, sub-Alfvenic flow
M>1, A<L1;
(4) supersonic, super-Alfvenic flow
M>1, A>1L

Then Eq. (24), after inversion, becomes

Xo@,y) =0, (x,y), k=1,234, (62)
Tz, y) =7, (x,y)
__L __ f@) dt
- (x t) +F2 2z 1
63
wz(x,y)——|—yl»f(x+FlyI), ©3)
¢4(x.y)=——|ﬂf(w—F‘lyl),
(%, Y) =0:(T, Y)
___F ") (x—-t)dt
= (Mz—l)x ,.(Il,‘—t)z--}-Fzyz’
F . L(64)
D& Y) =gy f @+ Flyl), j
D@ Y) =y @=Flyl), |
hxy) =i (x,y) =;UL‘I—[21:A%§IT1_)\
L fr@dt
. @02 FFy
; __ A
Y= MerAz—1 (65)
XITII " (x+Flyl),
L(x,y)=T§1/fy_2ﬁl
Y g
XTyT ' (x—Flyl),
where
F— (1_M2) (1_A2) 12
ST T-M-Ar
and
m(x) =2f (z). (66)

This condition (66) follows from the
hydrodynamic boundary condition ¥ (z, +
0)=TFf(x) after y inversion of Eq. (24) with
R,=oc0. Equation (62) shows that the
magnetic flux lines are aligned with the
streamlines. When the magnetic singulari-
ties in the airfoil do not satisfy Eq. (66),
a linearized solution must have an equiva-
lent current sheet on the surface of the
body such that the discontinuity in b, (,
Y) across the airfoil is 2f' (z). In view of
the wave diagram in Fig. 2, this current
sheet corresponds to the MHD boundary
layer of finite R. theory.

The pressure drag on the airfoil is
computed from Eq. (64) as

Dm=D;-a=0 Dp2=Dﬁ¢
e[ @y @

The magnetic drag due to Eq. (66) is
computed from Eqgs. (62) and (63) as
Dmx—Dmg——O sz mt

()} de. (68)

The magnetic drag is negative for
supercritical flow, and the total drag is
nonnegative in any case.

Equation (64) shows that the compress-
ion region of subsonic elliptic flow is
identical with the expansion region of
supersonic elliptic flow, while the stream-
lines given by Eq. (63) are the same. The
velocity-pressure variation along a stream
tube for elliptic flow is similar to that of
ordinary gasdynamics as has been pointed
out by Sears (1960).

The flow past a wavy plate of Case (1)
for R.=occ can readily be obtained from
Egs. (55)~(58) and (62) ~(66) by replacing
the limits of integration (a,b) by (—oo,
oo) and carrying out the integration.
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SIMILARITY SOLUTIONS OF
INCOMPRESSIBLE FLOW

The Fourier transforms of the solutions
for a thin symmetrical airfoil (23) and
(24) can be used directly to determine
the magnetic singularities h(z) or m(x}
for desired flow fields. When these flow
fields are invariant (except for constant
factors) for a certain group of the set of
parameters 4, M, and K., we shall use the
term similarity solution. We have already
encountered a similarity solution relating
supersonic sub-Alfvenic flow and subsonic
elliptic flows in the previous section. Two
similarity solutions of incompressible flow
will be considered in the following.

Classical ideal flow. The classical ideal
flow, i.e., inviscid incompressible noncon-
ducting fluid flow is characterized by the
Laplace equation. This corresponds to the
case M=0, R.= 0 in Egs. (23) and (24).
It is straightforward to show that this
can be an MHD solution for arbitrary R,
if

h(z) = —2f (x)
for crossed fields; l
and m(@)=2f(x) (69)
for aligned fields, ‘
with M=0, arbitrary 4 and K.

The stream function is given by
__ Y i ) dt,
vy =—L[ L5

and there is no current in the flow. It is
easy to see that the magnetic singularities
provided in the body by Egq. (69) are sgch
that the electromotive force E+VXB in
the flow vanishes identically.

The drag on the airfoil is zero; the

Alfen wave drag is balanced out by the
effect of the magnetic singularities (69)
introduced in the airfoil.

An upstream wake. It is convenient to
redefine the magnetic Reynolds number
R.as a real number, positive when the
free stream velocity is in the positive z-
direction and negative when the free stream
velocity is in the negative z-direction.
Then, the direction of the free stream
velocity appears in the general solutions
(23) and (24) only through R. (or K).
Equation (17), which may be called an
MHD Oseen equation, shows that incomp-
ressible flow with aligned fields is governed
by the same differential equation for the
group K(A®>—1)=const. In particular, sub-
Alfvenic flow (K>0, A<1) and super-
Alfvenic reversed flow (K<0, A>1) are
governed by the same differential equation
(17). But, Eq. (24) is not invariant under
the group K(A?—1)=const. due to the
“manner” in which the boundary conditions
enter. However, if the body is magnetized
according to m(x)=2A% (x), a similarity
solution is obtained as

APA@ Y B A)

=A%4,(z, ¥; Ray A1),
Uz, y; Rn A)

=T (z, ¥; Bapn 4),
P, Y; Bn, A)

=p,(Z, Y; Bm, 4)),
K({A*-1

=K, (A:—1), M=M,=0,
m(x) =24% (x),

my () =24,f ().

We have seen in Eq. (49) and Fig. 2 that,

for an inviscid incompressible MHD flow
with aligned fields, the upstream disturb-

7

ance is bigger (smaller) than the down-
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stream disturbance for sub(super)-Alfvenic
flow. Then Eq. (71) gives a similarity law
that relates the upstream wake of sub-
Alfvenic reversed flow (4 <1, K<0) to the
downstream wake of super-Alfvenic flow
(A>1,K>0). A similar theorem for viscous
flow with R.=co has been found by
Hasimoto (1959). To clarify the meaning
of Eq. (71), consider a sub-Alfvenic flow
and a super Alfvenic reversed flow related
by Eq. (71) where the free streams have
the same density p° and magnitude of
velocity |U|. Then, the pressure fields (With
physical dimensions) of the two systems
of flow are identical, the velocity fields
(with dimension) have the same stream-
lines and magnitudes of velocity but have
oppsite flow direction everywhere, while
the magnetic fields differ by a constant
factor such that the physical Lorenz force
of the two systems of flow are given by
the same function of the coordinates z
and y.

FLOW PAST WAVY WALL WITH
FINITE THICKNESS

The solutions obtained above for flow
past many plate may be used to construct
flow past wavy wall with finite thickness
where free stream conditions above and
below the wall may be different. The
configuration of the problem is shown in
Fig. 7. The y coordinates of the upper
and lower surfaces are ¥, () =f+f(z) and
Y1 () =—1'—f'(x), respectively, f(zx), and
the current sheet 7(z) imbedded in the
wall at y=0 and normalized by B/u, can
be written in terms of their Fourier
expansion:

f(®) =f.exp (i6.x)
(%) =%neXp (15, 7)
For the crossed fields case the applied

(72)

B is constant, and for the aligned fields
case the applied field B/y is constant.

The differential equations to be satified
by the flow flieds are the same as in the
case of a wavy plate with infinitesimal

thickness.
8
el . AMRu, o, 1, B B
1ix)
7 //
S SIS LS X // %
Hx), % /% //
B' WLT:)M
el v &, M, Ry, ol g, B R

Fig. 7. Configuration of the proflem. B and
B'lie either in the z or y direction.

Therefore, the solutions given by (28),

(29), and (32) are still valid provided that
the functions h(x) and m(z) are rein-
terpreted to satisfy the magneti boundary
conditions at the interfaces y=t, 0, and ¢.

The magnetic field in the wall is harmonic

and hence may be written as:

X (x,y) = (dy» sinh&,y+ds.cosh &, 9)
X exp (26, x)
for  0<y<t. (73)

X,W (x: ZI) = (dll.-z Sinh&,,y
+d'z coshé,y) explié.x)
for  —t <y<o.

For the magnetic field in the flow, we

write, from (29) and (32)
X (@, y) = (Funfi+Kinks)
exp i {&ux+yn (y—1)}1, y>¢t;
X (%, y) =89 (F'nf.+Kuk's)
expi{&2~7n (y+1)], y<—t (74)
where, for crossed fields,

Fu= (=1’ g, Kn=(~1)'55

ku=h. sg=1;
and, for aligned fields.
! a: e (1Y D2in
_( 1) ’ Kln“( 1) 282" I3
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kyv=m., 8g=-—1.
The magnetic boundary conditions at
the inter-faces are

Xw':X’ws

aa.Xy = aav;;’ +i(x) at y=0;
X=X,

1 83X, 1 8 _

v oy = a oy Y=t
X’w"”’X’,

1 X -1 X at y=—t'

w ay ¥ ay
SOIVil’lg (73)"(75) for dpu dzm d,lm dlzm
fn, Kny gives -

d’2n= dzu, d’]n= d1u+% (76}
dw)  (fa (E,.)
d% i f n_"' cmﬂﬂn}
== A -t
k. MY ¢ g ! |
I
K. fa ’*‘qﬂw (77 n t')
7N
sinhé&at coshé&at
coshé,t sinh&,t
A’I:
—sinh&.t cosh &7
—cosh &t sinh &t
- (Kta) 0
- ;f: (v:nKzn) 0
(78)
0 —(K'w) 89
0 K’iu) sg/i
where

(En) =Fi.+F} 285 (’izuKtn) =?}1nK1s+79‘zuK2m
etc.

(73), (74), (76), (77) completely de-
termine the magnetic field. The stream
function ¥ (x, y) and the pressure p(z,
Y) are, in view of (29) and (32), given
by,

¥ (z, y) =Fnexpliibat+y.(y—011, v>1,
(T, ¥} =Punexpt G +m (y—0)}1, v> 8
T(x,y) =~V mexp[{{&x—7"n(y+E)],
y<~t,
p(x, Y) =0 nexpli{§x—v L (y+1)}],
y<~1,
the substitution
implied always.

h.(or M,) =k, being

The solutions obtained by Broer & van
Wijngaarden are contained in the present
theory as the aligned fields cases:

M=0, y=p'=p,, A=A, Ru=R'n,

1) f@) =F (D), i(x)t=0, I=t'-0;

@) f@),=~f (), i(x)=0, I=1'>0;

3) i(x) =0, t-00, t'—0; and

@ flo)=f (), i{x)=0.

The 3 special solutions obtained in (29)-
(44) correspond to the cases:

A=A, M=M', R.=R.t,

O flw) =f(x), t=t'—0;

@) f@)=—f (x), t=t">0; and

(3) t-»00, =

The structure of the damped waves in
the flow fields are characterized by ma
which has been extensively discussed in
(45)-(51).

For aligned fields, the present theory
breaks down as R,—00 unless further
conditions are imposed on f(z), {(z) and
t, t' (see Refs. (1])-(14)

The author is indebted to Prof.. A E.
Bryson, Jr. of Harvard University for the
kind advice and help given to him in
carrying out this research.
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